Блог

Статьи о клиентском сервисе, искусственном интеллекте и их взаимодействии.

Кейс Мой горящий тур: у вас есть только 30 секунд, чтобы не потерять клиента

Кейс Мой горящий тур: у вас есть только 30 секунд, чтобы не потерять клиента

## О компании "Мой горящий тур" Сеть турагентств «[Мой горящий тур](https://moihottur.ru/)» была основана в 2010 году и является лидером на рынке горящих туров и путёвок в региональных центрах Сибири и Урала. Каждый месяц около 5000 туристов отдыхают, заказав путёвки через «Мой горящий тур». Сеть турагентств включает филиалы в более чем 30 городах России, а также активно развивается франчайзинговая сеть. ## Задачи компании В современном мире покупатели не хотят ждать. Если они не получат информацию или товар у вас, они обратятся к конкурентам, которые предложат то же самое быстрее и, возможно, дешевле. Это особенно актуально для холодных лидов. В сфере турагентств у всех компаний примерно одинаковые предложения, поэтому на первое место выходят скорость и качество ответа клиенту. Если холодный лид задает вопрос, у вас есть всего 30 секунд, чтобы не потерять его. При запуске рекламных кампаний в сервисе «Мой горящий тур» возникала проблема — лиды, задававшие вопросы в соцсетях, терялись из-за задержек с ответом. Поскольку таким лидам нужно отвечать максимально быстро, операторы и консультанты не всегда успевали. **Цель** — заинтересовать холодного лида и начать диалог в течение 30 секунд после поступления вопроса. Важно выяснить, куда клиент хочет поехать, и предложить ему «горящие» варианты туров. ## Решение Был выбран Wikibot, главные критерии: очень умный бот, недорогой сервис, крутая команда поддержки. Итоговое решение работает так: 1. База туров есть на сайте в формате XML. 2. Для бота Wikibot база туров просто часть базы знаний. 3. Бот мгновенно вступает в коммуникацию с лидами из соцсетей, отвечает на общие вопросы и помогает выбрать тур. 4. Инструкция для бота выглядит так: ``` Ты менеджер по продажам турагенства, консультируй туристов. При выборе тура следуй сценарию: 1. Для поиска тура по контексту используй формат: "Город вылета" - "Город или Страна прилета" - "дата тура" в формата yyyy-MM-dd 2. Уточни обязательные параметры это город вылета, страна или курорт отдыха 3. При первом поиске предложи туры, независимо от дат и количества туристов. 4. После каждого уточнения данных по туру, осуществи поиск тура по контексту 5. Если поиск по стране Турция, то ищи сразу по городу Анталия 6. Если много подходящих вариантов, то показывай в порядке возрастания цены. ``` ## Результаты запуска бота Первая цель достигнута - мы оперативно отвечаем на все запросы, не теряя при этом лиды. А это значит, что можем масштабировать наши рекламные кампании с более эффективным бэком. Кроме того бот уже помог нескольким клиентам пройти все шаги выбора тура, передав менеджеру заказ на оплату. Благодаря боту наши лиды получают быстрые ответы на типовые вопросы и актуальные цены по направлениям, выставленным на сайте турагентства. Сейчас бот отвечает в соцсетях вк, инстаграм и телеграм, а также в виджете на сайте в городах где нет офисов компании, это примерно 5-10% всех заявок. Расти есть куда, но постепенно, т.к. бота нужно презентовать в разных подразделениях компании и вводить в работу постепенно, не ломая другие процессы. Также нужно адаптировать алгоритм бота под разные сегменты аудитории: для постоянных клиентов нужна одна логика, для тех кто постоянно мониторит цены, но ещё не купил, нужна другая логика. Круто что алгоритм работы бота задается на обычном русском языке, важно только понимать что бот умеет, а что нет. Далее мы будем улучшать работу бота, настроим аналитику и посчитаем экономику бота в сравнении с людьми. Умный бот — хорошее решение для работы с холодными лидами, особенно в периоды повышенной активности клиентов. Для теплых лидов, пока лучше подходят менеджеры. Артем, технический директор «Мой горящий тур» ## Об умных ботах Wikibot Умные боты Wikibot — это автономные программы на базе искусственного интеллекта, способные решать задачи без участия человека. Бот Wikibot: - Поддерживает диалог, помнит всю беседу, задает уточняющие вопросы клиентам. - Собирает с клиентов любые данные и передает менеджерам. - Вызывать API других систем, например, чтобы узнать статус заказа или получить список товаров по критериям клиента. Умных ботов Wikibot всё чаще называют цифровыми сотрудниками, поскольку они выполняют те же функции, что и обычные сотрудники. Создайте своего цифрового сотрудника или выберите готовый шаблон на https://app.wikibot.pro/bots/new

@Tom_LETO
Кейс СушиСелл: бот закрывает 20 тысяч тикетов в неделю, больше 90% от всех обращений

Кейс СушиСелл: бот закрывает 20 тысяч тикетов в неделю, больше 90% от всех обращений

## О компании Суши Sell [Суши Sell](https://xn--e1afka0abm4b.xn--p1ai/) стремится стать компанией №1 по доставке суши в России. Наша миссия — вкусные роллы для своих людей. На данный момент у компании: - Более 120 филиалов, которые успешно работают и приносят прибыль - Присутствие в 100 городах России и команда из более чем 800 сотрудников - Более 140 тысяч подписчиков в социальных сетях ## Задачи технической поддержки В отделе заботы о клиентах работает 30 специалистов. Основные задачи отдела: поддержание лояльности клиентов, решение их проблем, консультирование. Помимо вопросов, связанных с доставкой заказов, отдел заботы о клиентах также обрабатывает сообщения и комментарии в социальных сетях. Компания активно представлена в социальных сетях VK и Telegram, постоянно проводит конкурсы и акции. В результате этого компания получает более 80 тысяч заявок в месяц, при этом более 85% из них не требуют ответа. **Текущая ситуация:** - Из-за большого числа сообщений операторы пропускают важные запросы, что может приводить к потере клиентов. - Политика компании предусматривает ответ на каждый запрос, не являющийся спамом. Ответы на однотипные комментарии вручную экономически нецелесообразны. - Операторам компании приходится просматривать все обращения, что отнимает много времени от выполнения важных задач. Для решения этих проблем команда Суши Sell решила создать цифрового сотрудника, который разгрузит операторов и будет оперативно отвечать на запросы пользователей. **Цель:** сократить ручную обработку и снизить стоимость обработки комментариев. ## Решение Был выбран Wikibot, главные критерии: очень умный, недорогой, крутая команда поддержки. Итоговое решение работает так: ![sushisell.jpg](https://cms.wikibot.pro/uploads/sushisell_jpg_969c0ae22c.jpeg) 1. Клиент Суши Sell пишет вопрос или комментарий в одной из социальных сетей. 2. Сначала запрос обрабатывает антиспам-навык, который работает быстро и очень дешево — всего за 50 копеек. 3. Далее запрос обрабатывается навыком переключения на оператора: по самым важным темам запрос передается оператору, а на остальные — главному агенту для ответа. 4. Если запрос доходит до последнего этапа, клиенту отвечает самый «умный» и мощный навык, который использует базу знаний. Каждый навык использует свою языковую модель. Такое решение позволяет на втором шаге закрывать большую часть тикетов всего за 50 копеек, что значительно оптимизировало расходы на работу бота. Навыки не только помогают сократить расходы, но и лучше определяют границы знаний бота. Навык переключения на оператора передает задачу навыку ответов только по тем вопросам, по которым настроена база знаний. ## Результаты запуска бота для СушиСелл > Бот оправдал все наши ожидания, и мы смогли решить главную проблему — обращения, не требующие ответа. Мы внедрили фильтрацию спама. Теперь бот автоматически обрабатывает обращения клиентов, не требующие ответов, без участия оператора. Он также закрывает часто задаваемые вопросы, что в совокупности составляет более 90% всех обращений. Благодаря этой автоматизации мы снизили ФОТ на 2,5 единицы. На данный момент бот обрабатывает 20 тысяч обращений в неделю, из которых 18 тысяч полностью закрывает самостоятельно. Это стоит компании 30 тысяч рублей в неделю. Таким образом, 30 000 / 20 000 = 1,5 рубля — средняя стоимость закрытия одного обращения. По затратам бот сопоставим с расходами на сотрудников, но при этом предоставляет значительные преимущества для развития бизнеса: - Время ответа бота всегда не превышает 10 секунд, что для нас является важным показателем. В результате мы смогли сократить общее время ответа на 30%. - Бот полностью обрабатывает спам, благодаря чему операторы больше не пропускают важные сообщения, что повышает лояльность клиентов. - Бот позволяет избежать увеличения штата в пиковые сезоны и периоды роста компании. Следующим шагом мы планируем научить бота работать с нашей CRM, чтобы он мог информировать клиентов о заказах и начислять баллы лояльности. Лариса, руководитель отдела заботы о клиентах. ## Ещё раз о цифрах в сухом остатке - Бот обрабатывает 20 000 обращений в неделю за 30 000 рублей. - Средняя стоимость закрытия одного обращения: 30 000 / 20 000 = 1,5 рубля. - 90% обращений бот закрывает самостоятельно, остальные передает операторам. Чтобы включить умный и дешевый анти-спам фильтр напишите нам https://t.me/use_wikibot

@Tom_LETO
Консультант-продажник в турагентстве

Консультант-продажник в турагентстве

Недавно глава Nvidia Дженсен Хуанг рассказал, что скоро AI-агенты научатся планировать многоходовые решения сложных проблем. Они будут иметь привилегированный доступ к информации и взаимодействовать с другими AI для выполнения практически любых задач ([источник](https://www.windowscentral.com/software-apps/nvidias-ceo-envisions-a-future-where-multi-shot-agentic-ais-armed-with-reasoning-superpowers-outperform-humans-in-the-job-market)). AI-агенты — это автономные программы на базе AI, способные решать задачи без участия человека и общаться между собой. Теперь Wikibot тоже AI-агент: + Поддерживает диалог, помнит всю беседу, задает уточняющие вопросы. + Собирает с клиентов любые данные и передает менеджерам. + Может вызывать API других систем. Пример нашего клиента: Туристическое агентство - сделали бота без нас: 1. База туров есть на сайте в формате XML. Они дали нашему боту на неё ссылку. 2. Написали инструкцию боту. 3. Подключили к чату. Инструкция бота - программирование на русском языке (Обучение —> Агенты): ``` Ты менеджер по продажам турагенства, консультируй туристов. При выборе тура следуй сценарию: 1. Для поиска тура по контексту используй формат: "Город вылета" - "Город или Страна прилета" - "дата тура" в формата yyyy-MM-dd 2. Уточни обязательные параметры это город вылета, страна или курорт отдыха 3. При первом поиске предложи туры, независимо от дат и количества туристов. 4. После каждого уточнения данных по туру, осуществи поиск тура по контексту 5. Если поиск по стране Турция, то ищи сразу по городу Анталия 6. Если много подходящих вариантов, то показывай в порядке возрастания цены ``` Бот-Консультант-продажник помогает клиенту выбрать тур и, когда клиент готов к оплате, переключает на менеджера. Консультант-продажник в турагентстве — это специалист, занимающийся продажей туристических услуг и консультированием клиентов по вопросам выбора туров, бронирования поездок и подготовки к путешествиям. Напишите нам, чтобы получить сравнение эффективности бота-продажника и человека-продажника, а также расчет экономической выгоды проекта https://t.me/use_wikibot.

@Tom_LETO
Кейс фестиваля «Бессонница»: нужна поддержка в чате для тысяч гостей, здесь и сейчас

Кейс фестиваля «Бессонница»: нужна поддержка в чате для тысяч гостей, здесь и сейчас

## О фестивале «[Бессонница](https://insomniafest.ru/)» — единственный в мире фестиваль анимации, проходящий в формате большого опенэйра. Каждое лето на уютной поляне, окруженной лесом и рекой, организаторы ставят огромные экраны и в течение 4 ночей показывают лучшие авторские анимационные фильмы со всего света. Днем фестиваль превращается в привычный опенэйр: музыка, перформансы, инсталляции, лекции, развлечения и природа. И карнавал! ## Зачем нужна поддержка гостей В этом году фестиваль посетят больше 18 тысяч человек, и всем им нужны ответы на возникающие вопросы. Кто-то находит ответы на сайте самостоятельно, кто-то обращается за помощью в нашу поддержку. При этом большинство вопросов - типичные: - Как купить билеты? - Как добраться? - Что брать с собой? - … и множество других. Вопросы повторяются, но у каждого гостя свои нюансы. Организаторы фестиваля хотели максимально автоматизировать ответы на типичные вопросы, чтобы сократить нагрузку на службу поддержки, поэтому было принято решение обратиться к технологиям искусственного интеллекта. ## Решение Организаторы посмотрели доступные на рынке сервисы и выбрали Wikibot. Wikibot позволяет создать умного бота для поддержки клиентов. Бот обучается по данным сайта и частым вопросам, интегрируется в хелпдеск или чат, отвечает клиентам 24/7. ## Интервью с со-основателем «Бессонницы» Дмитрий Кучев **1) Дима, привет, как нашли Wikibot?** Привет)) Искал целенаправленно ИИ-решение, которое можно настроить самому и легко воткнуть в наш омнидеск. **2) С каким запросом и с какой болью пришли?** Хотелось снизить количество пропущенных тикетов и неправильных ответов на типовые вопросы, а труд волонтеров сфокусировать на решении более сложных запросов от гостей. У нас практически неограниченный волонтерский ресурс, но хотелось именно сократить человеческое участие в ответах на типовые вопросы. **3) Потенциальные критерии выбора кандидатов** Доступная для нас цена, интеграция с омнидеском и возможность простой самостоятельной настройки. Смотрел и даже обращался в Лию и Яндекс.Саппорт, до того как нашел вас. С Лией не срослось, а Яндекс вообще не ответил ни на один из запросов :) **4) Что больше всего зацепило или произвело wow-эффект** Изначально — интеграция с омнидеском и демонстрация быстрой настройки с помощью гугл-таблицы. Покопавшись, стало понятно, что остальное примерно такое же легкое. A-ha момент тут был когда бот стал отвечать правильно на сложносочиненные вопросы даже без ключевых слов. **5) Что не понравилось или не получилось?** - Невозможность работать с комментариями к постам (отвечать только на прямые вопросы, на которые бот может ответить, все остальное игнорить) - Дает только часть ответа, когда обращается к базе знаний. - Не держит контекст, не умеет отвечать на последующие вопросы по теме. **6) Получилось ли улучшить клиентский сервис с помощью бота?** Да, в целом все получается неплохо. Не без шероховатостей, но жить можно и настраивать тоже) **7) Какой функцией чаще всего пользуетесь?** Обучение бота (первая линия и база знаний в виде гуглотаблицы) и песочница для тестирования **8) Какие факторы были в пользу покупки?** Адекватная цена, которую сразу видно, легкость самостоятельной настройки, возможность самостоятельной покупки, бот не пускается в самостоятельные рассуждения и галлюцинации, не реагирует на запросы не по теме. **9) Как долго думали над покупкой?** Практически вообще не думал, как только понял, что бот решает мои задачи — взял. **10) Насколько бы порекомендовали наш сервис друзьям и знакомым?** Порекомендовал бы, с оговоркой, что люди представляют себе как работать с ИИ. Оценка, с учетом недостатков описанных ранее - 7 из 10. Задачи решает, но есть куда расти (контекст и вот это все). Если не брать в расчет эти недостатки, то 10, меня все устраивает, более-менее понятно, как бороться с неправильными ответами **11) Сколько людей у вас было на поддержке до бота и сколько сейчас?** Непосредственно в момент внедрения бота на поддержке было 3 волонтера. На период обучения бота я всех отодвинул от поддержки и следил за ответами бота самостоятельно, обучая его в процессе. Сейчас все те же 3 волонтера, но количество тикетов на человека стало меньше, благодаря обработке ботом типовых запросов. **12) Дима, спасибо громадное за честный фидбек, мы будем стараться улучшать бота!** Приезжайте на «[Бессонницу](https://insomniafest.ru/)», будет классно!

@Tom_LETO
Умный бот в GBS.Market: сокращение среднего времени ответа, поддержка клиентов 24/7

Умный бот в GBS.Market: сокращение среднего времени ответа, поддержка клиентов 24/7

### О компании GBS.Market Компания GBS.Market разрабатывает одноимённую кассовую программу [GBS.Market](https://gbsmarket.ru/). **Для чего нужна кассовая программа GBS.Market?** GBS.Market — это решение для автоматизации розничной торговли и заведений общественного питания. Программа позволяет: - Организовать рабочее место кассира или официанта. - Контролировать движения товаров (поступления, продажи, списания), построение отчетов. - Вести складской учет, управлять товарными остатками, проводить инвентаризации. - Работать по 54-ФЗ, продавать маркированные товары: табак, парфюмерия, легкпром и т.д. - Подключать POS-оборудование: онлайн-кассу, сканер ШК, весы, эквайринг. - Печатать ценники, этикетки, накладные и др. документы. - Вести базу покупателей, организовать систему лояльности, оформлять продажи в долг. - и многое другое. https://www.youtube.com/watch?v=HMblkqnlW2Y **Важная отличительная особенность GBS.Market — для поддержки и обновления программы не нужен специалист. Это делает доступной GBS.Market для небольших магазинов и торговых точек.** ### Задачи технической поддержки В службе поддержки работает 4 человека, график с 10 до 17 по МСК. В среднем техподдержка закрывает от 200 диалогов в месяц (в диалоге может быть как 1 вопрос, так и 50). Для организации службы поддержки используется ПланФикс в связке с различными чатами и телефонией. Для повышения удобства пользователей, компания GBS.Market решила создать бота, который будет обучаться на документации компании и предоставлять быстрые ответы пользователям, в том числе в нерабочее время. Обучающие материалы для бота: - База знаний — справочный центр на сайте. - Первая линия — обычно небольшие статьи, отвечающие на конкретные вопросы. Основная метрика — оценка клиентом качества ответа. Но оценку ставят не более 10%. ### Решение Был выбран Wikibot — сервис для поддержки клиентов при помощи искусственного интеллекта. Чат-бот обучается по документации, подключается в хелпдеск, работает 24/7. Wikibot как ChatGPT для вашей компании: не только отвечает пользователям, но и задаёт уточняющие вопросы, открывает и закрывает тикеты, узнаёт информацию из других систем по API. ### Мнение команды GBS.Market о Wikibot **Плюсы** Все ожидания от сервиса вполне оправдали себя. Решение очень перспективное, особенно в случае наличия хорошей документации по продукту. Из плюсов: - Автоматический парсинг базы знаний без необходимости прописывать то, что уже было ранее прописано. - Ребята на связи, отвечают оперативно, помогают с решением кейсов, подсказывают как улучшить ответы бота. По нашему запросу доделали внешнюю интеграцию под наши потребности, добавили несколько полезных для нас фишек. - Сам бот достаточно шустрый, формирует ответы в 3-5 секунд. - Ответы бота иногда впечатляют - иногда отвечает лучше новичка на первой линии поддержки. **Минусы** Пока особых минусов не вижу. Если совсем придраться, то: - Бот иногда не находит ответы на вопросы, которые прописаны в базе знаний. Но чаще причина тому не очень подходящая формулировка. - Пару раз наткнулись на фантазии бота, но поддержка оперативно реагирует на подобное и вносит корректировки в алгоритмы. - Не умеет работать в режиме "диалог", сохранять контекст предыдущих вопросов. Хотя с этим и люди не всегда справляются)) - И да, надо поддерживать базу знаний в актуальном состоянии и ответы формулировать четко. Но в этом есть и свои плюсы — рост количества статей в базе знаний положительно сказывается на поддержке. **В итоге** Внедрять бота в поддержку нужно аккуратно, чтобы клиент смог легко переключится на человека. Правда, не редки, случаи, когда и от человека на первой линии сложно добиться решения вопроса. Тут скорее проблема в выстроенных процессах конкретной компании. Но вот ответы, которые выдает Wikibot - это не просто шаблонный ответ или копипаста с сайта - это полноценный ответ, который не хуже ответа новичка в поддержке. Особенно, если материалы, на которых учится бот, прописаны качественно. Первое время однозначно надо держать бота под контролем, чтобы понять его поведение и стиль формулировки ответов. Мы, к слову, сейчас в процессе адаптации сотрудника на первой линии, что собственно и подтолкнуло к поиску путей улучшения качества и возможности автоматизации рутины. Базу знаний пришлось дописывать, но это делать нужно и для человека-новичка и для бота. В любом случае - это интересный опыт, который дает понимание, что ИИ может заниматься рутиной. Из положительного можно еще отметить: - Клиент получает ответ в реальном времени, 24/7. У нас бюджет не позволяет работать круглосуточно, да и нет в этом такой необходимости. Но те, кто получит ответ в нерабочие часы, однозначно останутся довольны. - Использование бота мотивирует наполнять базу знаний. А это дает косвенные плюшки — клиенты смогут находить эти материалы на сайте сами. Хорошо для SEO — сайт появляется в поисковой выдаче по новым запросам. Сотрудники могут использовать новые материалы, чтобы информировать клиентов. - Мотивирует писать доступным языком статьи, как для "ребенка", коим по сути является бот. Это особенно полезно для пользователей, т.к. их навыки в продукте могут вообще отсутствовать. - Снижение нагрузки на поддержку по однотипным вопросам. Искать ответы на одинаковые вопросы очень утомительно. Освободившееся время можно потратить более продуктивно. Если бот закроет хотя бы половину обращений, которые в компетентности первой линии — это будет очень хорошо. Если закроет 3/4 — это будет огонь. По большой части зависит от наполнения базы знаний, чем сейчас и занимаемся. ### Интервью с командой GBS.Market через 6 месяцев после старта бота **1. Какое отношение пользователей к боту?** Негатива не встретили со стороны клиентов. Но мы старались плавно ввести бота в работу и периодически контролируем качество его ответов. **2. Какое отношение к боту службы у поддержки?** В целом положительное. **3. Как изменились метрики?** Сложно однозначно сказать. Но на часть вопросов клиенты получают ответ быстрее, особенно во внерабочие часы. Вероятно, это повысит лояльность клиентов. **4. Что больше всего НЕ нравится в боте?** Анализ работы, наполнение базы знаний. Понятно, что работа бота без качественных материалов невозможна, но иногда утомляет необходимость анализировать вопросы/ответы. Конечно, все это актуально и для обучения живого человека. Натянутый минус)) В целом каких-то явных минусов не могу выделить. **5. Учитывая что грядет GPT5+ и боты станут намного умнее, как вы видите идеального бота-саппорта через 3 года?** 1. Сохранение контекста общения в рамках одного чата. 2. Понимание плохо структурированных вопросов. 3. Распознавание речи (для голосовых сообщений). 4. Распознавание изображений (сообщения об ошибках, ориентация в интерфейсе приложения по базе знаний). **6. Какой общий итог проекта?** В общем, впечатления крайне положительные. Бот работает на реальных пользователях, а мы систематизируем свои знания и даем их бот.

@Tom_LETO
Умный бот для технической поддержки в компании Adesk

Умный бот для технической поддержки в компании Adesk

## О компании Adesk Adesk — это сервис финансовой аналитики и управленческого учёта для бизнеса и предпринимателей. Более 1500 компаний по всей России, странам СНГ и Восточной Европы взяли учёт финансов под контроль и начали зарабатывать больше с Adesk. Сервис интегрируется с банками, CRM-системами и 1С, автоматически загружает финансовые данные и строит необходимые отчёты. Adesk помогает: - Избавиться от рутины учёта финансов в таблицах и освободить время. - Понимать чистую прибыль бизнеса в реальном времени. - Заранее узнавать о недостатке денег, чтобы не попадать в кассовые разрывы. - Составлять бюджеты и отслеживать их выполнение. - Видеть реальную рентабельность каждого направления и проекта компании. ## Задачи технической поддержки В службе поддержки работает 3 человека, график с 8 до 17 по Мск. В техподдержке нет разделения на первую и вторую линию. Сложные вопросы переадресуются либо разработчикам, либо более опытным по финучету сотрудникам. В среднем техподдержка получает 700-800 обращений в месяц. Для организации службы поддержки используется Carrot quest, в этом же сервисе находится база знаний. Чтобы стать ещё удобнее для пользователей компания Adesk хотела обеспечить быстрые ответы на вопросы в службу поддержки, а также отвечать на типовые вопросы в нерабочее время. Было принято решение создать бота, который обучается на документации компании и помогает пользователям, отвечая на русском языке. ## Решение Был выбран Wikibot — сервис для поддержки клиентов при помощи искусственного интеллекта. Чат-бот обучается по документации, подключается в хелпдеск, работает 24/7. Wikibot как ChatGPT, работает по процессам компании: не только отвечает пользователям, но и задаёт уточняющие вопросы, открывает и закрывает тикеты, узнаёт информацию из других систем по API. ## Мнение команды Adesk о Wikibot **Плюсы** Хорошая поддержка и коммуникации со стороны команды Wikibot. Практически все запросы, которые у нас появлялись мы оперативно и решали в телеграм чате. Так например, проблемы с тем, когда бот не отвечал на вопрос, на который точно был ответ в базе — разбирался в течение дня и быстро возвращал боту корректное поведение. Даже с маломальски собранной базой знаний % корректных и релевантных ответов составляет 30%, и по мере доработки базы знаний видно, как бот отвечает точнее и корректнее. **Минусы** Интерфейс личного кабинета и функциональность, пока отнесем минусам, но с поправкой на то, что Wikibot недавно стартовали, и динамику того, что происходит в личном кабинете мы рады видеть. Отдельно радует, то что «мы приняли ваше пожелание во внимание» — это не отписка. Так например, мы приятно удивились когда, попросили возможность создавать вопросы и ответы через жесткие формулировки без подключения AI. И Wikibot добавили это в одном из своих обновлений. Мы используем в Wikibot в связке с базой знаний на Carrot Quest для того, чтобы разгрузить с технической поддержки часть «простых вопросов». Со сложными, где требуется знать много контекста, бот пока не справляется, хотя тут скорее вопрос к базе знаний. Настройка бота дисциплинирует нашу команду тех поддержки. Надо регулярно обращать внимание на то, что пишет бот, на сколько он релевантно распознает вопросы пользователей, и по ощущениям, что команда поддержки стала более вовлечена в актуализацию HelpDesk, и самостоятельно пишет доработки для базы обучения бота. К тому же подобная работа в попытке «дообучить» бота — помогает лучше слышать запросы пользователей и держать больше фокуса внимания на том, как строятся коммуникации с клиентом. **Итоги**: бот экономит время специалистов саппорта, а совместная работа позволяет подсветить те места, которые раньше ускользали от нашего взгляда. ## Интервью с командой Adesk через 6 месяцев после старта бота **1. Какое отношение пользователей к боту?** Негатива явного не было. Чат-бот иногда сам успешно закрывает вопросы, иногда клиенты просят переключить на оператора. В целом, бот не вызывает недовольства и часто успешно помогает. Были пара пользователей, которые интересовались конкретно ботом (какая версия гпт, например). **2. Какое отношение к боту службы у поддержки?** Успех бота зависит от его обучения, т.е. насколько заполнена база данных (откуда он берет информацию), сколько у него подходящих знаний для ответа есть в базе. Бот – это инструмент, его настройка зависит от нас. Конечно, бывает, когда бот придумывает информацию или выдает очевидно неподходящий ответ, но это чаще всего потому, что: 1) пользователь некорректно задал вопрос; 2) в базе нет нужной информации; 3) вопрос специфичный и глубокий, который не покрывается базой знаний. **3. Как изменились метрики?** В целом бот не добавил новых обращений, так или иначе работа операторов осталась. Бот, сокращает время первого ответа, поскольку отвечает и приветствует пользователя мгновенно, и научился закрывать самостоятельно простые вопросы. В примерных цифрах: раньше бот только 18-20% корректно закрывал, то теперь на 40-45% обращений может давать корректный ответ. Но зачастую пользователи приходят с более конкретными кейсами, которые пока бот не может решать (в силу нашей специфики). Бот в нашем случае позволяет закрыть простые вопросы, и завязать разговор, до того момента, как к разговору подключится оператор. **4. Что больше всего НЕ нравится в боте?** Проблемы с пониманием контекста ранних сообщений пользователя, не всегда отвечает согласно контексту. Фразы-шаблоны (когда бот не знает ответа и признается в этом), от которых мы пока не поняли, как избавиться. **5. Учитывая что грядет GPT5+ и боты станут намного умнее, как вы видите идеального бота-саппорта через 3 года?** Наш бот все еще на гпт 3.5, насколько мне известно. Гпт 4 и гпт 4 турба уже гораздо умнее гпт3.5, это заметно и очевидно. Четверка замечает больше деталей, отвечает гораздо логичней и корректней. Предположу, что при наличии достаточной базы знаний, бот уже на четверке смог бы решать более сложные вопросы. На гпт5 у меня только лучшие ожидания, потому что разница даже между гпт 3.5 и 4 огромная. Гпт 4 vision умеет распознавать изображения, и если этот модуль прикрутить в чаты, то бот также сможет решать некоторые проблемы по скриншотам пользователей. Не отрицаю, что в будущем боты смогут заменить большую часть функций техподдержки, оставив на поддержку более технические вопросы, которые нельзя решить только с базой знаний.

@Tom_LETO
Умный бот для технической поддержки ИТ-компании Zvonobot

Умный бот для технической поддержки ИТ-компании Zvonobot

Поделимся, как улучшилась работа тех.поддержки Zvonobot с помощью сервиса Wikibot ([ссылка на оригинал](https://zvonobot.ru/blog/umnyy-bot-dlya-tehnicheskoy-podderzhki-it-kompanii-zvonobot/)). **Zvonobot** — разработчик популярного сервиса для автоматических рассылок, который работает внутри России и за рубежом: Казахстане, Чехии, Индии, Нигерии и других странах. **Основным продуктом Zvonobot является робот**, который умеет распознавать человеческую речь, отвечать на вопросы абонентов, принимать входящие вызовы и совершать звонки по многотысячной базе клиентов за короткий промежуток времени. **Содержание** 1. Специфика работы сервиса Zvonobot 2. Задача Zvonobot 3. Автоматизация работы тех.поддержки 4. Решение 5. Как разрабатывался бот? 6. Результат 7. Отношение пользователей сервиса Zvonobot к чат-боту 8. Автоматизация работы технической поддержки 9. Мнение Zvonobot 10. Бот изменит подход в работе с клиентами **Специфика работы сервиса Zvonobot** Zvonobot даёт возможность запустить массовое голосовое оповещение людей: покупателей, налогоплательщиков, жителей города, посетителей мероприятий. Среди клиентов компании есть, как представители из разных бизнес сегментов, так и из государственных секторов. **Технологии Zvonobot** применяются на разных этапах реализации воронки продаж: - Лидогенерация - Дополнительные продажи - Сбор обратной связи по качеству предоставленных услуг - Возвращение, удержание клиентов С помощью сервиса, всего за 1 минуту можно решить сразу несколько задач: запустить звонки на телефоны клиентов, распознать их ответы и собрать обратную связь по нажатию клавиш телефона. **Задача Zvonobot** Сервис должен делать всё, что поможет его клиентам быть уверенным, что технические ограничения не нарушат работу рассылки и не приведут к негативным последствиям для их бизнеса. Поэтому в задачи специалистов поддержки сервиса входят: прием обращений клиентов, четкое определение их запросов, оперативная обработка тикетов и пр. **Автоматизация работы тех.поддержки** Чтобы повысить уровень качества работы сервиса, специалисты Zvonobot решили оптимизировать первые этапы работы с клиентами. А именно обработку общих вопросов клиентов и составление ответов на них. **Решение** Совместно с Wikibot и техническими специалистами сервиса было решено разработать специального бота и включить в основной функционал: - обучение на основе документации сервиса - помощь пользователям личного кабинета Zvonobot 24/7 - автоматические ответы на русском языке - инструмент для обработки и хранения информации в CRM — системе **Как разрабатывался бот?** Чтобы разработать логику работы бота под индивидуальные задачи технической поддержки Zvonobot, Wikibot составил бриф из 7 вопросов: 1. **Сколько человек в службе поддержки?** Всего 10 сотрудников, в том числе 2 специалиста, ответственных за стабильную работу маршрутов для совершения звонков 2. **Служба поддержки работает ночью?** Служба поддержки работает ежедневно с 8:00 до 20:00 по Мск 3. **Сколько из них специалистов на первой линии?** Ежедневно на первой линии работают 3 специалиста 4. **Как организована коммуникация с клиентами в службе поддержки?** Для коммуникации с клиентами задействовано несколько каналов: сайт, e-mail и чаты в telegram 5. **Сколько клиентских запросов приходит на первую линию поддержки через чаты?** За 1 месяц приходит около 1000 запросов 6. **В каком формате сформирована база знаний?** База знаний формируется после прохождения регистрации каждого пользователя на нашем сервисе, в формате FAQ (часто задаваемые вопросы). Сейчас мы проводим работу по созданию более простой и универсальной базы для клиентов. 7. **Какие метрики используете для оценки работы службы поддержки?** Рассчитываем две метрики: время первого ответа клиенту и продолжительность решения тикета. **Результат** Интегрированный бот Wikibot работает по принципу искусственного интеллекта ChatGPT. Он поддерживает сразу несколько бизнес-процессов: - отвечает на общие вопросы пользователя - задаёт уточняющие вопросы - открывает и закрывает тикеты - получает дополнительную информацию из других систем по API **Отношение пользователей сервиса Zvonobot к чат-боту** Естественно, что людям понадобится некоторое время, чтобы привыкнуть к автоматическому помощнику. Но мы видим, что процент уровня лояльности пользователей сервиса ежемесячно растет. **Автоматизация работы технической поддержки** **Во-первых**, сотрудники с легкостью адаптировались к функционалу бота и без проблем делегируют ему значительную часть обработки простых обращений от пользователей. А при необходимости бот переводит клиента на узкопрофильного специалиста второй линии тех.поддержки. **Во-вторых**, почти в 6 раз удалось сократить время первого ответа на вопрос клиента: от 3 минут до 30 секунд. **Мнение Zvonobot** **Плюсы** - Понятный фреймворк для работы с сервисом Wikibot - Достижение прогнозируемого результата: сокращение времени обработки запросов пользователей и повышение их лояльности - Клиентоориентированная техническая поддержка Wikibot **Минусы** - Чтобы исключить погрешности в работе бота и для достижения идеальных результатов требуется дополнительное время на обучение и редактуру собственной документации тех.поддержки **Бот изменит подход в работе с клиентами** За исключением незначительного недостатка, Wikibot грамотно распознает вопросы и дает релевантные ответы пользователям сервиса Zvonobot. За время пилотного запуска возникло много вопросов о функциях технологии. Но специалисты Wikibot оказывают профессиональную поддержку во время разработки кейсов и в процессе их реализации. **Команда Zvonobot рекомендует Wikibot** “Мы уверены в технологическом развитии бота и предполагаем, что он выйдет на свободный диалог с пользователями и адаптируется под решение нестандартных человеческих вопросов. Возможность апгрейда бота до уровня GPT5+ не исключение”.

@Tom_LETO
Служба заботы Skillbox: как ChatGPT-бот забрал 25% обращений и позволил нам уделять больше внимания сложным запросам

Служба заботы Skillbox: как ChatGPT-бот забрал 25% обращений и позволил нам уделять больше внимания сложным запросам

Это кейс нашего клиента. [Оригинал статьи на VC](https://vc.ru/services/1049066-sluzhba-zaboty-skillbox-kak-chatgpt-bot-zabral-25-obrashcheniy-i-pozvolil-nam-udelyat-bolshe-vnimaniya-slozhnym-zaprosam) Сегодня хочу рассказать, как мы ввели чат-бота на основе ChatGPT, который отвечает студентам по нашей базе знаний и забирает 25% обращений на себя. Описала весь путь: как продумали логику его работы и встроили в обработку обращений без страданий для пользователя, какие выбрали показатели и цели, как их отслеживаем, про ошибки, радости и счастливый финал 🙂 Меня зовут Снежана Майская, я руковожу Службой заботы в Skillbox. Это третья статьи в серии, [здесь я писала про то, как росла и менялась поддержка](https://vc.ru/life/381347-kak-rosla-i-menyalas-sluzhba-podderzhki-skillbox), [а тут — про то, как мы ведем базу знаний](https://vc.ru/hr/385886-kak-sozdat-rabochuyu-bazu-znaniy-svoimi-silami-opyt-komandy-sapporta-skillbox). После прочтения статьи вы поймете, нужен ли вам ИИ-бот и готовы ли вы к его внедрению. Для смелых в конце будет чек-лист, чтобы вы могли использовать материал как инструкцию с учетом наших ошибок и успехов. Надеюсь, будет полезно! ![01.png](https://cms.wikibot.pro/uploads/01_5d49acf27c.png) ## Выбрали бот Или бот выбрал нас. Команда Wikibot предложила проиндексировать наш существующий FAQ для пользователей в Notion и посмотреть, как работает ИИ-бот. Он выдавал ответы по теме, хоть пока и далеко от идеала — решили пробовать. Сейчас бот, используя ChatGPT, работает на основе нашей новой открытой базы знаний для пользователей: zabota.skillbox.ru. Платим по тарифу за пакет «кредитов». Кредит — это стоимость обращения к боту. Основные вопросы стоят 1 кредит, первая линия* — 0,5 кредита, приветствия и благодарности — 0,2 кредита. *Первая линия — это вопросы, на которые бот не обращается в базу знаний, а дает один заготовленный и фиксированный ответ или переводит на оператора. ## Интегрировали с хелпдеском От подписания договора до интеграции с Юздеск и запуска бота прошло 2 дня. Мы решили начать с канала Telegram, так как там поступает меньше всего обращений. Каких-то особых проблем в подключении не было, по крайней мере для нас 🙂 С этого момента мы начали совместную непрерывную работу над совершенствованием нашего бота и продукта в целом, потому что Wikibot — это стартап, у которых мы одни из первых клиентов. ## Продумали логику работы бота Мы не любим, когда нужно долго добираться до агента поддержки, поэтому решили не создавать препятствий и нашим студентам. Сразу задумали, что человека можно будет вызвать с помощью слова «оператор», и прописали это в его ответе. Сначала бот обрабатывал первое и каждое следующее сообщение, пока студент не позовет оператора. ### Минусы: - не все дочитывали до конца, что нужно назвать волшебное слово и просто продолжали писать и задавать вопросы — так может продолжаться вечно и мы не узнаем, если специально не следим; - каждый запрос стоит денег, бесконечные диалоги съедят запас «кредитов». ### Плюсы: - студент мог получить правильный ответ бота на каждое сообщение; - в конце боту говорили «спасибо» и иногда даже не замечали, что с ними говорит ИИ :) Поэтому оставили обработку только первого сообщения. Также решили, что все ответы бота будут перепроверять агенты. Тем более все тикеты мы помечаем темой для статистики, а бот этого не умел. Поэтому правила в Юздеске сильно менять не пришлось, просто в цепочку обработки тикета ворвался ИИ, который давал ответ. Получилась такая схема обработки: ![02.png](https://cms.wikibot.pro/uploads/02_b8ebbe57b0.png) ## Прописали шаблоны бота Решили, чтобы в первой части сообщения от бота будет его сформированный ответ из базы знаний, а в конце — шаблонная приписка: «Если остались вопросы, напишите оператор». Подумали, что если написать про бота в начале ответа, то студент не станет читать и сразу попросит оператора, так как пока доверия к ботам не сложилось, и опыт у многих скорее негативный. Еще важно составить список слов, которыми пользователь захочет позвать агента — диапазон примерно от «позовите человека» до «император». ![03.png](https://cms.wikibot.pro/uploads/03_797d632950.png) Позже поняли, что бота нужно еще обучать, а его ответы иногда были прямо сказать ужасные и невпопад, и стоит все таки предупреждать студентов, что с ними общается бот, чтобы в случае обмана или чуши с его стороны, перестраховаться. Придумали такой текст: >Здравствуйте! Я бот Skillbox и учусь вместе с вами 💙 >*тут ответ* >Если остались вопросы, напишите «оператор» — переведу вас на человека. >Мой ответ составлен на основе базы знаний Skillbox. В ней вы найдете более подробную информацию: >— *ссылка на одну статью* На практике оказалось, что негатива наличие бота не вызывает. Если ответ не подошел, студент спокойно дожидается агента. Позже добавили и другие реакции бота на разные случаи: - Исключение, если в сообщении только приветствие без вопроса, чтобы он не пытался найти ответ и не отвечал «у меня нет ответа на этот вопрос». Сделали к таким случаям отдельный шаблонный ответ, чтобы бот просто здоровался: «Здравствуйте! Чем могу помочь?». - То же самое проделали со «спасибо» и добавили отдельный ответ: «Рад помочь! Пишите, если будут вопросы». - Добавили еще одно сообщение, когда студент вызывает оператора: «Хорошо, передал ваше обращение в работу — скоро вернёмся с ответом». - И сделали специальные автоответы в зависимости от времени дня. Если это нерабочее время, то бот отвечал, что сейчас Служба заботы отдыхает, но он постарается помочь. И дальше сгенерированный ответ бота. Получились такие шаблоны: ![04.png](https://cms.wikibot.pro/uploads/04_142ae4de5c.png) ## Встретили приколы бота (и проводили) Поделюсь, с чем мы работали и с чего начинали. Не нравилось, что поначалу он отвечал, будто не имеет отношения к Skillbox: «в данной документации не указано» или «документация предоставляет несколько вариантов». Однажды так и сказал: «Я не являюсь представителем Skillbox и не имею доступа к их политике обучения. Рекомендую вам обратиться в их службу поддержки». Что в этот момент думал про нас студент, остается только догадываться 🙂 Или отфутболивал в поддержку, хотя студент уже в одном из наших каналов: «напишите в Службу заботы Skillbox на hello@skillbox.ru, через виджет чата на платформе или же в Telegram — @Skillbox_support_bot». Так получалось, потому что в статьях нашей базы знаний мы писали, куда обращаться, если не нашли ответ. ![10.jpeg](https://cms.wikibot.pro/uploads/10_1221a8675e.jpeg) Еще в ходе донастройки регулировали волю ИИ, потому что иногда он выдумывал ответы, отправлял искать на платформе то, чего нет, или давал личные рекомендации, какой курс выбрать: ![11.png](https://cms.wikibot.pro/uploads/11_f410b47997.png) ## Ввели показатели для отслеживания успеха бота Мы читали статьи, как другие измеряют успешность бота, и пришли к выводу, что каждый считает по-своему. Поэтому подробнее остановлюсь, как именно выбрали замерять успешность бота, а если что — спрашивайте в комментариях, откуда цифры, объясню. Первый раз мы проверили ответы бота спустя неделю его работы. В первой выгрузке я ввела такие столбцы: - Верно или нет. - Какая ошибка: - отправил к нам же;ответ неверно сформулирован;придумал от себя;нужно было передать оператору;ответ не по делу;неполный ответ. - Недочеты: - слеши;опечатка;странная формулировка;кавычки. - Как надо? Как лучше? — здесь пишем словами, что должен был ответить бот. ![12.png](https://cms.wikibot.pro/uploads/12_228b82133b.png) Первые результаты были такие: - От общего числа тикетов, прошедших через бота, верных ответов или переводов на оператора — 28%, можно лучше — 20%, неверно — 52%. - Среди запросов, где бот совершал попытку ответить, верно — 23%, можно лучше — 22%, неверно — 55%. - Из общего числа ошибок нужно было передать оператору в 43% случаев. Отправил писать к нам же в поддержку — 24%. Сначала получились такие два показателя, которые мы стали отслеживать: - Количество верных срабатываний — правильный ответ на вопрос или верное решение передать в этом случае оператору. Так как очевидно, что не на все вопросы может и должен отвечать бот, что-то надо сразу отдавать человеку. - Количество верных ответов — считаем от общего числа тикетов, которые прошли через бота. *Количество верных ответов среди всех попыток ответить по базе знаний не стали сразу считать, но потом вспомнили про этот показатель и ввели его задним числом. Окей, столько он правильно переводит, столько дает правильных ответов. А польза есть? Мы поняли, что не хватает ключевого — какой процент обращений обрабатывается полностью без агента. Исходя из которого мы как раз и сможем посчитать экономическую полезность бота для бизнеса. Поэтому в следующих проверках добавили еще два столбца в выгрузке — вернулся ли пользователь и вернулся ли саппорт. Мы начали это измерять, но пока себе еще врали — так как агенты продолжали проверять тикеты после бота и возвращаться, если что, и проставлять тему обращения. А значит мы еще тратим человеческие ресурсы. ## Выделили ИИ-менеджера На этом этапе, через месяц после старта, я призвала на помощь человека из моей команды проверять выборочно выгрузки с ответами бота и помечать, верный ли он дал ответ и как можно было лучше. А также править формулировки в статьях базы знаний, чтобы помогать боту лучше понимать контекст и верно отвечать. Классно, если бы такой человек шел в комплекте с «кредитами», но никто лучше нас не знает, правильно ли бот дал ответ, даже если есть база знаний. Делегировать этот вопрос — ухудшить совершенствование бота. ![13.png](https://cms.wikibot.pro/uploads/13_22c6fce592.png) ## Поставили цели для бота Откуда взяли целевые значения: — ориентировались на текущие значения и прикидывали, на сколько еще это может вырасти в реалистичном и оптимистичном сценарии; — заложили свои надежды и желания, потому что ниже нам неинтересно и не надо. Цели получились такие: - Верных срабатываний из всех тикетов — 95%. - Верно отвеченных из всех тикетов — 50%. - Верно отвеченных из попыток ответить — 97%. - Успешно закрытых полностью ботом из всех тикетов — 30%. ![14.png](https://cms.wikibot.pro/uploads/14_4896910123.png) ## Проблемы: бот не работает? Спустя полтора месяца работы стало казаться, что становится только хуже. Работа над базой знаний с нашей стороны и донастройка алгоритмов со стороны Wikibot не дает результатов. Энтузиазм падает — то бот придумывает ответы от себя, то перестает отвечать сегодня на то, на что вчера давал хороший ответ. ![15.png](https://cms.wikibot.pro/uploads/15_a4203e2871.png) Команда Wikibot предложила вариант сделать дополнительный шаг в обработке — гугл-таблицу с вопросами и ответами, на которые бот срабатывает пока некорректно. Бот бы обрабатывал в таком порядке: сначала искал близкий по смыслу вопрос в таблице, а если не находил, переходил к поиску по открытой базе знаний с применял свой ИИ. Идея мне понравилась — мы начнем больше тикетов обрабатывать верно. Когда мы начали прорабатывать вопрос-ответ в табличке, быстро пришло понимание, что мы скатываемся в тот бот, что у нас раньше был в Юздеске. Так как оказалось, что надо добавлять разные вариации запросов для одного ответа: «ошибка отправки», «ошибка при отправке сообщения» и так далее. Возник вопрос — зачем нам тогда этот ваш хваленый ИИ, если я сижу и придумываю, какой формулировкой студент может задать вопрос. Напрашивался вывод: бот пока не готов взять на себя часть работы поддержки! Позже команда Wikibot признала, что файл QA в гугл-таблице спутал им поиск, и вдобавок они превратили свой продукт в сценарного бота. Но как принято в захватывающих историях, эти сложности были толчком к переломному моменту. На этом этапе мы договорились, что убираем гугл-таблицу, возвращаемся к изначальному сценарию и будем регулярно совместно работать над улучшением бота — мы правим базу знаний, они алгоритмы. ## Ввели теги для автоматического подсчета показателей Кроме ручной выборочной проверки, нужен автоматический подсчет. Мы завязали простановку тегов по определенным фразам бота в зависимости от ситуации — когда он дал ответ, когда ответа не знает или когда сработало наше настроенное исключение. Здесь процент рассчитывается от общего числа тикетов. Также правилом проставляем тег, когда студент написал после ответа бота. Так мы понимаем, когда ответу бота не поверили или он не подошел – полностью или частично. Бывают случаи, когда обращаются к оператору с первого сообщения в тикете – срабатывает тег и здесь. И настроили тег на случаи благодарности боту. ![16.png](https://cms.wikibot.pro/uploads/16_eef6d81dfd.png) В табличке по описанию и в первичной настройке кажется все просто. Но на деле сталкиваешься с разными сценариями и неучтенными условиями, так как помимо бота есть еще 300 настроенных правил в хелпдеске по распределению тикетов и другим процессам. Получается примерно так 🙂: ![17.jpeg](https://cms.wikibot.pro/uploads/17_51f459392e.jpeg) ## Как изменился бот спустя 6 месяцев работы Появился личный кабинет, где можно менять шаблоны ответа бота, просматривать отчеты и тестировать ответы бота, не расходуя кредиты в реальном канале. Wikibot сделали «первую линию поддержки», где можно указать вопросы, на которые нужно дать фиксированный ответ или передать оператору. ![18.png](https://cms.wikibot.pro/uploads/18_9a781123b8.png) К проиндексированным статьям теперь можно задавать ключевые слова и фразы, чтобы бот лучше распознавал вопросы. Добавили в исключения на почтовом канале список спамеров и формулировки автоответов студентов типа «я в отпуске», чтобы не тратить кредиты. Wikibot ввели возможность выставлять тему обращения, соответствующую статье в базе знаний, где боту удалось найти ответ. Ура! Нам оставалось только переключить правила в Юздеске, чтобы теперь тикеты назначались на агентов только тогда, когда студент попросил оператора. Теперь мы можем замерить реальное количество тикетов, которые решились без агента. ## Результаты бота: что сейчас Момент истины — насколько бот справляется с задачей забрать на себя часть обращений пользователей. Лучше слов скажут только цифры — он взял на себя 25% обращений, которые полностью закрываются без агента: ![19.png](https://cms.wikibot.pro/uploads/19_b48a6769f0.png) ![20.png](https://cms.wikibot.pro/uploads/20_89d368f2e6.png) Ответы бота сегодня выглядят так: ![21.png](https://cms.wikibot.pro/uploads/21_2433bc282c.png) Кроме того, бот нам подарил красивое время первого ответа – меньше двух минут. ## Cколько экономит нам бот При условии, что один эффективный агент на первой линии обрабатывает 75 тикетов в смену, а бот забирает 25% обращений — мы экономим на 5 агентах. Стоимость обслуживания бота не больше, чем оплата труда одного сотрудника, поэтому экономия выражена и в деньгах для бизнеса. ![22.png](https://cms.wikibot.pro/uploads/22_4e6203f42c.png) Мы довольны тем, что получилось. В 2024 году большие языковые модели станут умнее и доступнее, а значит наш бот сможет закрывать больше задач. ## Готовы ли вы к ИИ-боту в службе поддержки ### Нужен ли вам ИИ-бот: 1. Если в поддержке работает пара человек, то внедрение бота будет экономически нецелесообразно. Бот даст значимое улучшение показателей и эффект для бизнеса, если в команде от 5 специалистов. Для маленьких компаний имеет смысл запустить бота отвечать по ночам и выходным. 2. Если у вас меньше 500 тикетов в месяц, также не торопитесь с ботом. ### Бот своими силами или готовое решение: Да, разработать своего чат-бота сейчас можно за пару часов, однако реальное продакшн-решение потребует инвестиции на содержание штата разработчиков, которые будут готовы на постоянные доработки и непрерывную работу над улучшением алгоритмов. Мы посчитали, сравнили и нам оказалось выгоднее работать с подрядчиками. ### К чему нужно быть готовым: Бот будет плохо отвечать какое-то время. Невозможно сначала сделать идеально бота, а потом его запустить. Это итеративные процесс совершенствования продукта, только реальные вопросы пользователей покажут слабые места. Потребуется вложить силы и время. Наш опыт показывает, что к успеху можно прийти при интенсивной и системной совместной работе заказчика и исполнителя. ## Чек-лист: как внедрить ИИ-бот в службу поддержки 0. Собрать открытую базу знаний 1. Интегрировать бот в хелпдеск 2. Продумать схему обработки обращения 3. Настроить правила и триггеры в хелпдеске 4. Написать шаблонные части ответа бота 5. Выделить ИИ-менеджера для совместной работы с командой бота 6. Продумать показатели для отслеживания работы бота 7. Продумать целевые показатели успеха мероприятия 8. Ввести теги для автоматического подсчета показателей 9. Продумать вопросы-исключения и L1 бота 10. Проиндексировать базу знаний 11. Запустить бота 12. Непрерывно улучшать базу знаний и алгоритмы

@Tom_LETO